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During design of the envelope of a noncircular belt pulley one should take into account several
conditions resulting from kinematics and geometry of the uneven-running strand transmis-
sion. Design of proper values of pitches for a belt pulley, which enable good cooperation
between the belt pulley and the belt, should be carefully done. In available Polish literature
and catalogues offered by belt manufacturers, one can find only detailed dimensions of belts
with a trapezoidal profile. Information on other profiles is insufficient for full description of
geometrical features of belt pulley teeth as well as to design tools for machining belt pulleys.
Manufacturers of belt pulleys and belts give only necessary data to submit a purchase order.
The paper presents a digitization process (scanning) of geometry of the envelope of circular
belt pulleys with non-standard profiles; this scanning has been done with the application
of coordinate measuring machines. The obtained information on geometrical features of to-
oth profiles has been numerically analysed. As a result of this analysis, the mathematical
description has been obtained. Finally, noncircular belt pulleys with different tooth profiles
have been designed and manufactured.
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1. Reverse engineering: definition, historical notes and basic techniques

Many definitions of the reverse engineering exist nowadays. In (Eilam, 2005), it is said that it is a
process of extracting the knowledge or design information from anything a man made. Thus what
makes the difference between the reverse engineering and conventional scientific research is that
with the reverse engineering the artifact being investigated is man-made unlike in the scientific
research – there is taken into account a natural phenomenon. According to Schreve and Basson
(2005), the reverse engineering encompasses the set of activities aiming at (re)discovering the
functional, structural and behavioural semantics of a given artifact with the aim of leveraging
this information for the efficient usage or adaption of that artifact or the creation of related
artifacts. In (Ülker, 2013), the reverse engineering is defined as a process of duplicating an
item, i.e., its functionality and dimensions by physically examining and measuring the existing
parts to develop technical data (physical and material characteristics) required for competitive
procurement.

In (Eilam, 2005), the reverse engineering is dated back to the era of the industrial revolution,
the transition to new manufacturing processes. Then, in the years 1760-1840, new machines
entered to the manufactures, and the reverse engineering was a way of an espionage aiming at
acquiring information about modern machines, to have a commercial or military advantage of
having them. In fact, the espionage reverse engineering was practiced in the Antiquity: Egypt
built its power on Assyrian chariots copied around 1600 BC, in the 3rd century BC Romans
gained the domination on Mediterranean thanks to capturing Carthaginian quinquiremes. More
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recent examples of the analogous activities concern the Soviet piston-engine bomber Tupolev
Tu-4 (it was developed in late 1940’s as a copy of American Boeing B-29 aircrafts landed in
Vladivostok after completing combat missions to the Japanese mainland; see e.g. Fitzpatrick
and DiLullo (2006), also for juridical aspects of the reverse engineering) and decoding the Nazi
German encryption machine Enigma made by Polish and British cryptographers.
All four above examples concern directly military issues. In industrial practice, the reverse

engineering deals with recovering information on objects which disappeared or were damaged
(during the standard use or in experiments), with creation and completing of documentation for
an existing product or device, with product analysis, interoperability or re-designing.

Nowadays, the reverse engineering is applied in various branches of science and industry,
and it is still the most popular in recognition of the machine element shape (e.g. Baier et al.,
2012; Boyer and Petitjean, 2000; Kotlyar, 1991; Kumar, 2013; Kumar et al., 2014; Prautzsch
et al., 2002; Schreve and Basson, 2005; US Army Reverse Engineering, 2006). Obviously, the
reverse engineering comprises fitting, approximation and numerical optimization techniques, so
it is located within the applied mathematics. Thus, an reverse engineer can not be unfamiliar
with numerical methods and techniques (presented e.g. in Burden and Faires, 1985; Chapra and
Canale, 1990). In industrial applications, B-splines (including NURBS and Bézier splines) are
dominant representations of shape description – the reverse engineering very often applies these
techniques, see. e.g. Hoschek (2001), Sarfraz et al. (2013), Weiss (2001), Xia (2014), Yin and
Jiang (2010) as well as (Ray and Ray, 2013) and (Tsay and Fong, 2005) where genetic algorithms
are in use. It also concerns the search for the description of non-typical gears. Such gears are
discussed in many papers in both theoretical and implementation aspects – see e.g. Bär (2009),
Krawiec and Marlewski (2011), Laczik (2008), Liu and Chen (2008), Liu et al. (2013), Lovasz et
al. (2007), Telea (2012).
In this paper, we aim at simplifying and efficient describing the shape of a tooth which is

known by a point cloud only (the coordinates of these points are obtained with the digitalization
done by the CMM – coordinate measuring machine, see, e.g., Chajda et al. (2008). The tooth
shape is described by circles (determined by carefully chosen points) and an appropriate parabola
which joins the circles smoothly. This parabola can be presented as a Bézier arc (so it is the graph
of a Bernstein polynomial; these polynomials were found in 1912 and are still investigated, see e.g.
Farouki (2012), Pobegailo (2014), Prautzsch et al. (2002). This type of the description can not
be produced by the existing software (such as Rhinoceros from Robert McNeel & Associates,
ZAR products from HEXAGON Software, EXCEL-LENT from Excel Gear, Inc., MITCalc –
Worm Gear Calculation 1.16, GearTeq from Camnetics Inc., GearEngineer from DEPO).

2. Reverse engineering in design of belt pulleys with a noncircular envelope

Information on geometrical features of belt pulleys with non-standard profiles can be achieved by
methods of reverse engineering. In general, these methods consist of numerical discretization of
elements or machines, and conversion of the obtained graphical information (points or surfaces)
into two or three dimensional models (Marciniec et al., 2010). For the described example, the
process of reverse engineering consisted of four stages:

• scanning of the envelope profile of a circular belt pulley with the application of the CMM,
• numerical analysis of the obtained results,
• designing of the tooth profile geometry of belt pulleys,
• manufacturing of a prototype of the noncircular belt pulley.

During the measurements, the belt pulley was mounted on the table of the CMM, and the
measuring head was moved according to the assigned parameters. An essential restriction of this
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method is the possibility to scan cylindrical surfaces which are circumscribed for angles between
0◦ and 45◦. However, for the presented task, this range was sufficient owing to the repeatability
of belt pulley profiles. As a result of the measurement, the geometrical features of the belt pulley
were obtained in form of the Cartesian coordinates. The geometrical centre of the belt pulley
was taken as an origin of the coordinate system. This fact has improved the design process of
the geometry of noncircular belt pulleys during the next stage.

Fig. 1. Measurement of geometrical features of non-standard belt pulleys: (a) test stand, (b) belt pulley
measurement

The measurement of belt pulley profiles was performed by the CMM CNC DEA Global Image
Clima (Fig. 1). This machine was placed in an air-conditioned room, and this fact was essential to
ensure the correctness of the measuring procedure. The measurement consisted of a continuous
scanning with the use of a gauge plunger. Sampling density was equal to 100 points/mm, scanning
speed – 5mm/s, ball diameter of the gauge plunger SP 25M Reinshaw was equal to 1mm. The
measurements were performed for two variants. The first one consisted of automatic application
of the “offset” function – it took into account the ball dimension which was placed at the end
of the gauge plunger. In application of the second variant, a fragment of the envelope profile of
the belt pulley was obtained and the correction due to the ball radius was taken. The scanning
process allowed one to get a set of coordinates written in a txt file. On the basis of these
coordinates, the profile of the half of the belt pulley tooth was determined. The analysis of
curvatures of the obtained profile allowed one to restrict the number of coordinates which are
describing the profile to the value 36 (Table 1).

Table 1. Points coordinates accepted to the design of the tooth profile

j xj yj j xj yj j xj yj

1 −7.7752 55.1300 2 −7.5779 55.1470 3 −7.4664 55.1457
4 −7.4419 55.1429 5 −7.3921 55.1449 6 −7.3104 55.1346
7 −7.2542 55.1288 8 −7.1365 55.1013 9 −7.0037 55.0567
10 −6.9057 55.0085 11 −6.7908 54.9337 12 −6.7082 54.8588
13 −6.6734 54.8090 14 −6.6342 54.7239 15 −6.5970 54.6489
16 −6.5699 54.5646 17 −6.5449 54.4684 18 −6.5250 54.3727
19 −6.4728 54.1592 20 −6.4334 53.9815 21 −6.3991 53.8119
22 −6.3340 53.6141 23 −6.3032 53.5276 24 −6.2763 53.4198
25 −6.2224 53.2729 26 −6.1293 53.1231 27 −6.0630 53.0405
28 −6.0164 52.8889 29 −5.8621 52.6834 30 −5.6769 52.5085
31 −5.3631 52.2537 32 −5.0184 52.0408 33 −4.6800 51.8986
34 −4.1830 51.7606 35 −3.9972 51.7398 36 −3.7887 51.7423
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The obtained profile of the half of the tooth is presented in Fig. 2. This figure shows a square
with the coordinates 〈−8,−3〉 × 〈51, 56〉 and the points obtained as a result of the scanning
process. Five points which have a significant impact on the design process of the tooth profile
are distinguished by indexes (1, 10, 20, 34, 36).

Fig. 2. Points describing the half of the tooth profile of the belt pulley

3. Numerical determination of the tooth profile

The points obtained during the scanning process are called measuring points, and the points
which are laying on the nominal tooth profile are called nominal points.

The presented task consists in determination of mathematical description of the edge of the
perfect tooth – this description should be relatively simple. According to the accepted criterion of
the simplicity, the description should consist of a small number of equations and every equation
should describe a “simple” curve. The simple curve is a curve which can be simply descri-
bed on the basis of mathematical notation (without the application of any advanced computer
programs), e.g. low degree polynomial curves (straight line, parabola and n-degree polynomial
curves where n is a small natural number – it is generally accepted that n ¬ 4), second degree
curves (circle, ellipse and hyperbola), spirals (logarithmic spiral, spiral of Archimedes) and other
curves applied in mechanical engineering (e.g., cycloid, cardioid). The next research task is to
find and select the so-called transition curves such as Cornu’s spiral (also called as a clothoid).
These curves determine a standard way of transition from a circular arc to a straight segment
where the curve continuity is kept at the transition point.

Fig. 3. Four circles which are drawn through three successive measuring points: 1–2–3, 10–11–12,
20–21–22 and 34–35–36
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Taking into account the descriptions presented in literature concerning the analysis of the
measurement results of scanning (Filipowski, 2002; Filipowski et al., 2005) and information from
manufacturers of belt pulleys, we decided to approximate the analysed distribution of points by
arcs of tangent circles or polynomial curves of a low degree (line segments) in the case when the
tangency could not be modelled. Within the framework of the preliminary analysis, the circles
were drawn through every three successive measuring points. The examples of these circles are
presented in Fig. 3.
On the basis of the analysis of circles position and the measuring points, we can accept that

circle 10–11–12, i.e. drawn through the measuring point No. 10 and two successive points, is a
good approximation of the shape in its vicinity (in the range from point No. 8 to point No. 18).
Circle 34–35–36 is a satisfying approximation of the searched shape only in the vicinity of these
points. Figure 4 presents nine circles which are drawn through three successive measuring points.

Fig. 4. Nine exemplary circles which are drawn through three successive measuring points

Radii of all 34 circles (circle No. k passes through the points k, k + 1, k + 2, where
k = 1, 2, . . . , 34) are presented in Fig. 5. We can see that the variation of the radius r has
not any visible monotonicity (interval monotonicity). The interval monotonicity guarantees the
fulfillment of the condition of smooth transition between elements of the tooth profile.

Fig. 5. Radii r of circles No. k for k = 1, 2, . . . , 34. On the basis of Fig. 2, we can conclude that the
radius value r should be equal to 0 for point No. 16 or its vicinity; in the case of a perfect profile (when
it consists of two circles) the radius values r should be constant for k from 1 to ca. 15 and (higher than

the previous values) for k from ca. 17 to 34

The interval monotonicity characterizes circles (radius r is constant for any three points
laying on the circle), straight lines (r = 0), parabolas (these curves have only one point where the
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increasing function becomes the decreasing function or vice versa), etc. For spirals, the radius r
is constantly increasing (or constantly decreasing), and for a standard cycloid, the radius r is
decreasing from the infinity first (it is decreasing to the value 0, but it does not achieve it) and
next it is increasing to the infinity. The lack of the monotonicity is not a result of the reading
quality of the results from the CMM (monotonicity disturbance caused by work precision of
the CMM is not high – in practice this disturbance is negligible and is a part of the so-called
device error), but is a result of teeth manufacturing. Due to the lack of the monotonicity, the
circles have been drawn through two nonadjacent points. An idea of this approach is visualized
in Fig. 6 generated by points

A = (6, 7) B = (7, 6.82842) S = (10, 4.21252) T = (10.6832, 4.10557)

The configuration of these points is intentionally similar to that exhibiting by measured 36
points (numbered from 1 to 36, see Fig. 3). They determine two circles which are tangent at the
point M . The centres of the these circles are

L = (6, 4) and R = (10.6832, 6.34164)

and radii of these circles are equal to 3 and
√
5 = 2.23606, respectively (all calculations have

been performed exactly with the assistance of program Derive 5 from Texas Instruments, Inc.,
and the results have been then rounded to six significant digits).

Fig. 6. Two tangent circles; the left circle is drawn through points A and B, and the right one passes
through points S and T

The left circle has its highest point A, and the point T is the lowest point of the right circle.
The application of this method does not allow one to find the tangent circles where one

circle is drawn through the selected points from the beginning of the list (e.g. through points
No. 1 and 10) and the other circle is drawn through the end points (e.g. points No. 20 and 36).
The tangent circles are not found either for the case when measuring points No. 1 and 2 have
not been taken into considerations. The reason of this practice is the following observation: the
ordinates of these two points are smaller than the ordinates of measuring point No. 3, so (by the
assumption: the reading from the CMM does not produce any significant errors) these points
lay on the other side of the tooth profile than the analysed one. These points are presented
in Table 1 with the measurement results, because the starting point and the end point of the
reading have been imprecisely indicated.
After successive searching, it turned out that the best fitting for the end points is the circle

with the lowest point No. 36, and it goes through point No. 26. The equation of this circle is

(x+ 3.7887)2 + (y − 54.4144)2 = 7.14017
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and, as seen in Fig. 7, on this circle the points numbered as P20, P21, . . . , P36 sit up to a high
accuracy. The tangent to the circle (see Fig. 8) at the point P20 has the equation

y = 14.6779 − 6.10928x

Fig. 7. Circle with the lowest point P36 which is drawn through the point P26

Fig. 8. Tangent line at the point P20 and three circles for which the highest point is P3. On the left side
of the point P3, one can see points No. 1 and 2, and these ones are not taken into account

Searching for a circle with the highest point P3 and a circle which passes really close to
successive points is finished when the circle is drawn through the point P12. Figure 8 shows
this circle and two other circles which pass through points No. 14 and No. 17, respectively. It is
clearly seen that these two other circles are worse approximations with respect to points which
are close to the point P3 than the circle which goes through the point P12. This circle, passing
through P3 and P12, is covered by the equation

(x+ 7.4664)2 + (y − 54.0003)2 = 1.31173

and the line which at P12 is tangential to this circle has the equation

y = 48.9341 − 0.883171x

The curve between the points P12 and P20 is found by an inverse search for the Bernstein
polynomial B2 of degree 2. Here, we know points the wanted polynomial passes through (the
points P12 and P20) and slopes of tangent lines at these points (respectively −0.883171 and
−6.10928), so we can find coefficients c0, c1 and c2 of the polynomial

x→ B2(t) := c0t2 + 2c1t(1− t) + c2(1− t)2
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where the variable

t = 3.63901x + 24.4112

is introduced in order to transform the interval 〈x12, x20〉 = 〈−6.7082,−6.4334〉 in the standard
interval 〈0, 1〉 which is used to define the Bernstein polynomial B2. It results with the equation

y = −7.18927x2 − 97.6709x − 276.821

It describes the parabola which joins smoothly (i.e. with continuous derivatives at points P12
and P20) the arc P3P12 of the left circle and the arc P20P36 of the right circle.

As we see, the application the Bernstein interpolation (let us call so what we did: we jo-
ined two circular arcs by a parabola arc fitted in form of the Bernstein polynomial) resulted
with a polynomial curve (of the lowest possible degree here, 2). This is a non typical use of
the Bernstein polynomials (by their nature they serve to approximate points, and not to in-
terpolate them). A standard procedure to get a curve connecting two other curves is to deal
with an Hermite interpolating polynomial or with a spline function; in our case they have to be
found for the curvilinear segment with ends in P12 and P20, and we obtain a polynomial of the
third degree. Thus, our non-typical Bernstein interpolation produced a polynomial of a lower
degree (2); it means we obtained a description we looked for, namely the one of degree 2 only.
It is important because the lower degree the less sensitivity to data, and the data are measured
quantities (so they are always approximate values) as well as to the roundings executed in both
the calculation process and the final form (here it embraces 6 significant digits). Therefore, the
arc of the polynomial curve of the third degree satisfies the imposed requirements worse than
the polynomial curve y = B2(x) – especially in relation to the value y12. The obtained ap-
proximation satisfies (even in excess) the limits of manufacturing tolerances for the belt pulley
teeth.

To verify the correctness of the conducted scanning process, numerical data processing and
CAD modelling, a few of sets of noncircular belt pulleys were manufactured. Due to the low
manufacturing costs and relatively high manufacturing accuracy, the FDM (fused deposition
modelling) method of rapid prototyping was applied (Fig. 9).

Fig. 9. Noncircular belt pulleys with nonstandard tooth profiles manufactured with the use of the rapid
prototyping method

The manufactured belt pulleys were subjected to metrological analysis in the scope of geome-
trical features. The assessment of the correctness of the coupling between the belt and the belt
pulleys was also done with the test stand. The results of these analyses show that the presented
methodology can be applied with success to determine tooth profiles which are not defined in
standards.
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4. Summary

The reverse engineering presented in this paper starts with a cloud of points laying in the plane,
the coordinates of these points are obtained by the CMM (coordinate measuring machine), and
aims at producing a simple mathematical description of the object points. In the reported case,
the digitalized points are taken from a recently produced belt pulley which has not any geometri-
cal specification. The obtained description consists of three equations: for the arcs of two circles
and the parabola which smoothly joins them. This description is worked out via examination
of several other ones, and the paper shows how the final result has been obtained. This method
serves as an exemplary approach to the reverse engineering which can be applied in analogous
situations when, due to the definition of the shape, standard procedures are not applicable or
these ones give formulas which do not fulfil the requirement for the simplicity. A positive result
of the discussed procedure confirms that the reverse engineering can be successfully used to re-
trieve, as well as to design, the teeth geometry of non-typical gears. It also shows the specificity
of finding of an appropriate mathematical description; this process is inventory (it has to be
carefully fitted to the point cloud at hand) and time-consuming, it is troublesome to execute
it with no computer assistance. It also suggests that it is worthy to undertake research on the
automatization of forming of the mathematical description of profiles, and such a description is
necessary for numerical control of producing machines.
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